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UNL 2201: Space, Time & Matter                                                     Tutorial 9 
 
 

1)      The ‘Doppler Effect’ is responsible for the siren of an approaching fire engine having a higher 
pitch or frequency as perceived by a stationary observer, and correspondingly, a receding fire 
engine siren to have a lower frequency (as perceived by a stationary observer). Is it true or false 
that the Doppler frequency shift produced by you receding from the source of sound is the same 
as the shift produced by the source of sound receding from you?  
 
 

2)       The special relativistic formula for the Doppler effect (for either light waves or pulses) is:  
 

                                                                        λ′ = λ √(1+ v/c) 
                                                                                    √(1- v/c) 

 
where λ is the emitted wavelength as measured in the source’s reference frame, and λ′ is the 
wavelength measured in a frame moving with speed v away from the source along the line of sight 

i.e. v is the relative velocity between source and detector. (For relative motion toward each other, 
v<0 in this formula.) Obtain the above formula using spacetime diagrams. 

            For speeds much smaller than the speed of light, i.e. v<<c, show that this formula 
reduces to  

                                                                           λ′ - λ = Δλ = ± v 
                                                                                λ        λ          c 
 
3)       Let’s consider again the spaceship (Tutorial 6) traveling between two planets, A and B and 

emitting flashes of light every 6 minutes. As in Tutorial 6, it travels away from A and towards B. If 
its flashes are seen at 3 minute intervals on B, use the Doppler effect to determine that on planet 
A, the flashes are seen at:  

 
       (a) 3 minute         (b) 6 minute           (c) 9 minute            (d) 12 minute intervals.  

 
 

4) A comet is chasing a spacecraft. Let v be the speed of the comet, p its momentum and E its 
energy, all as perceived by the astronaut when the comet hits the spacecraft. In what way would 
increasing the spacecraft’s speed alter the astronaut’s perceived values of v, p and E?  
 

(a) v, p, E will all not change                             (b) v, p, E will all decrease   
 

(c) v, p will get smaller but E will not change      (d) v and E will decrease but p will not change  
 
                                      (e) E and p will decrease while v will not change.  
 
 
5) The same spacecraft as in the previous question is now being chased by a powerful laser beam. 
Let v, p and E be the velocity, momentum and energy of a photon in the laser beam as perceived 

by the astronaut when it hits the spacecraft. As in the previous question, in what way will 
increasing the spacecraft’s speed alter the astronaut’s perceived values of v, p and E? Choose one 
of (a) – (e) given in the previous question 4). 

 

6) The time dilation effect in Special Relativity means moving clocks run slower than ‘stationary’ 

clocks. On the other hand, if we consider two stationary clocks, one of which is at a higher altitude 

above the earth’s surface than the other, Einstein’s Principle of Equivalence implies that the clock 

that is placed at the higher elevation will run faster compared to the clock which remains on the 

ground. 

In terms of frequency, a clock moving at a velocity v will register a frequency  

                                                          f ' = f √ (1 – v2 /c2)                 

where f is the frequency of the ‘stationary’ clock; while a clock placed at a height H above another 

clock of frequency f will register a frequency 
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                                                                  f ' = f (1 + g H/c2). 

                    Let’s say we have two identical clocks, A and B, sitting together on the surface of the 

earth. Now, we lift clock A vertically to some height H, hold it there awhile, and return it to the 

ground so that it arrives just at the instant when clock B has advanced by 100 seconds. How 

should we move clock A so that it reads the latest possible time, but always assuming that it 

returns when B reads exactly 100 seconds? 

                     

                    Next, consider a slightly different problem; say we have two points A and B both on 

the earth’s surface at some distance from one another. We ask how we should go from A to B so 

that the time on our moving watch (i.e. it’s proper time) will be the longest — assuming we start 

at A on a given signal and arrive at B on another signal at B which we will say is 100 seconds later 

as measured by a ‘stationary’ clock. 

 

                     Assuming that the speed of the moving clock is much less than the speed of light, 

show that the net frequency shift of the moving clock is 

 

                                                               Δf   =   f  (g H – v2/2) 
                                                                c2 
and hence that the time excess registered by the moving clock over the entire trajectory from A to 

B will be: 

 
1 ∫ (g H - v2/2) dt 

                                                      c2 
 

which is supposed to be a maximum. 

 

                        The above reasoning leads us to conclude that Newton’s law of motion as it 
applies to a freely falling object in a uniform gravitational field can instead be restated as the 

Einsteinian law: an object always moves from one place to another so that a clock carried on it 

gives a longer proper time than it would on any other possible trajectory (with, of course, the 
same starting and finishing conditions). In other words, in free fall, the trajectory makes the 
proper time of the falling object a maximum. 

 
                         The resulting motion is what would be obtained by applying Newton’s second law 

because the latter can be restated in terms of the principle of least action*, which in the present 
case requires that the object moves from A to B in such a way that the quantity 
 

                                                   ∫ (½ m0 v2   - m0 g H) dt                                              is a minimum. 

 
* see, for instance, Chapter 19, Feynman Lectures in Physics Vol II 

 

7)  Show that in Newton’s theory of gravity, a light ray that passes by the Sun at a distance r0 

from its centre will, according to Newton’s theory, be deflected by an amount δNewton=2GM /c2 r0 

where M is the mass of the Sun.  

For a light ray that just grazes the surface of the Sun, r0 will equal the Sun’s radius. Upon 

substituting appropriate values for the quantities in the deflection equation verify that in this case, 

δNewton = 0.875”. 

Hint: Assume that the ‘light particle’ travels along a nearly straight line path (while this is a rather 

crude approximation, it nevertheless correctly gives the Newtonian deflection to leading order). 


