
1 
 

UNL 2201: Space, Time & Matter                                                     Tutorial 8 
 
 

 
1.         Suppose that both a bowling ball and a feather fall vertically from a height of 100 metres. 
As they fall to the ground, which encounters the greatest force of air resistance?  
 
             a) the bowling ball                      b) the feather                          c) both the same  
 
 

2.       What will happen if two identical cannons are aimed at each other and the shells fired 

simultaneously and at the same speeds? One cannon is higher than the other, but the two are 

perfectly aligned. 

 

3.      A boulder is many times heavier than a pebble – that is, the gravitational force that acts on 

a boulder is many times that which acts on the pebble. Yet if you drop a boulder and a pebble at 

the same time, they will fall together with equal accelerations (neglecting air resistance). The 

principal reason the heavier boulder does not accelerate more than the pebble has to do with: 

     a) energy         b) weight           c) inertia             d) surface area              e) none of these 

4.           Analyse the motion of a small object suspended from a fixed point by a string of length l 

and which oscillates back and forth through a small angle θ. Taking care to distinguish between 
the ‘inertial’ and ‘gravitational’ masses of the object, what is the period of oscillation of this 
pendulum? 

 
5.           Possibly the first entirely terrestrial experimental evidence that the earth is an oblate 

spheroid (instead of a perfect sphere) came from pendulum observations. A pendulum adjusted so 

that it swings seconds at Paris, say, must be shortened before it swings seconds at the equator. 

Explain this effect.  If a pendulum has a period of 1s at the equator, but its period at the north-

pole is instead 0.997s, what is the distance from the centre of the earth to the north-pole? What is 

the percentage difference between the equatorial and polar radii?  [Take the earth’s equatorial 

radius to be 6,378 km.] 

 
6.          Consider a plane flying at a constant velocity and altitude. We have previously analysed 
the motion of a projectile that is dropped out of the plane 
in terms of Newton’s dynamical laws both from the 
(inertial) frame of reference of the airplane itself, as well 

as that of a stationary (inertial) observer on the ground. As 
we learnt, the relation between these two frames of 
reference, each of which is inertial, is given by the Galilean 
transformations.             
             On the other hand, what would an observer falling 

alongside the projectile observe? Note that this is also the 

projectile’s “proper frame” i.e. the (non-inertial) co-

ordinate system attached to the freely falling object itself.              

 

7.          Given Newton’s gravitational constant, G = 6.67 x 10-11 Nm2kg-2, determine the mass of: 

                   a) the earth (assumed spherical), given that it’s radius is 6,380 km. 

                   b) the Sun given that the Earth’s distance from the Sun is 1.5 x 1011 meters 

8.         Take the earth to be a perfect sphere with a uniform mass density. Consider a satellite 

orbiting the earth in a surface-hugging orbit (assuming of course that there are no tall mountains, 

trees or buildings to obstruct the path of the satellite). Then, 
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a) calculate the period of such an orbit; 

b) show that this period does not in fact depend on the radius of the earth, but only on the 

earth’s mass density. 

9.         Say you performed an experiment to measure the acceleration due to gravity in a cave 

deep below the surface of the earth, would the likely (unless you actually perform an experiment, 

you cannot be entirely confident of the outcome!) outcome be greater or less than at the surface – 

i.e. would objects weigh more or less in the cave than at the surface?             

 

GROUP PROJECT – questions 10 & 11 

 

10.             Consider the hypothetical situation of drilling a shaft from a point on the 

earth’s surface, through its centre, to the anti-podal point on the opposite side of the 

earth, as discussed in the lecture.  

                 Next, a small sphere (label it A), of mass m, is held suspended at one end of 

the shaft and then allowed to drop into the shaft.  

a) Plot its subsequent one-dimensional (in space) motion against time. 

What is the period of this motion?  

 

b) Can you explain why this period is the same as the period computed in 

question 7a)? 

                  c)  Next, consider a second identical sphere (label it B) that is also dropped, 

again from rest, into the shaft but exactly 2 seconds after the first. Plot the motion of 

sphere B on the same graph as in part a) above. (Assume that the two spheres do not 

mutually interact in any way i.e. they are simply ‘transparent’ to one another.)  

                  d)  Plot the spatial separation (i.e. the distance) between the two spheres A 

& B as a function of time.  

                       What is the maximum separation between spheres A & B, and where 

does this maximal separation occur?  

                       What are the speeds of spheres A & B at this time? 

                   e)  Plot the rate of change of the relative speed between A & B against 

their spatial separation (i.e. distance between A & B).  

 

                   f)  Using Newton’s 2nd law, obtain an analytic (i.e. algebraic) expression for 

the rate of change of the relative speed between A & B. In fact, one can define the 

spacetime curvature inside the earth as: 

 

         spacetime curvature  =  rate of decrease of relative speed between A & B 

                                                          separation between A & B 

Qualitatively, provide some justification for this formula and using it compute the 

spacetime curvature inside the earth in units of time (i.e. seconds-2) and then 

convert your answer into units of length-2 (to convert, simply divide your answer by c2).  
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11.  Tests of the equivalence principle & the “gravitational red-shift” effect 

The table below lists some of the seminal experiments that sought to test the validity of Einstein’s 

equivalence principle and its prediction that for clocks in a gravitational field, a clock closer to the 

centre of gravitational attraction ticks more slowly than a clock that is further away, the so-called 

‘gravitational red-shift’ effect. 

Find out more information from published sources or the web about these attempts (or others you 

might come across) at improving the precision of experimental tests of the ‘gravitational red-shift’ 

effect. Focusing on one such attempt and based on what you have learnt, your group is to make a 

15 minute powerpoint presentation during the Week 13 tutorial session. The presentation should 

include your understanding of the underlying physics, a clear description of the experiment and a 

summary of its main conclusions. 

NB. A useful place to start your search for information might be: Was Einstein Right? Putting 

General Relativity to the Test by Clifford Will (this book should be available in the Scholar’s 

Reading Room).  

 

 

 

 

 

When Prediction/Experiment  Result & level of precision of test 

1927-60 
 
 

1960-70’s 

Solar gravitational “red-shift”:  for wavelength of 5893 Å  
 

(angstroms = 10
-10

 m) i.e. the bright yellow emission line 
in solar spectrum, predicted red-shift is 0.0125 Å towards 
longer wavelengths 

No agreement 
 
 
 

Agreement to about 5% 

1960 
 

1965 

Pound-Rebka experiment – ‘clock’ was an unstable 

isotope Fe
57

 & comparison made between two clocks with 
a height difference of 74 feet, utilizing the Mossbauer 
effect; R.V Pound and G.A. Rebka, Physical Review Letters 
vol 4, 337 (1960) 
 

Improved version of experiment by Pound and J.L Snider 

Agreement to about 10% 

 
 
 
 
 

Agreement to about 1% 

October 1971 J.C. Hafele and R. Keating ‘Jet-lagged Clocks’ experiment westward flight: predicted net gain in the 
‘flying clock’ =275 ns (nanoseconds) of which 

2/3 due to gravitational blue-shift vs. observed 
gain of 273 ns 

 
eastward flight: predicted net loss of 40 ns vs. 

observed loss of 59 ns; agreement to within 
 ± 20 ns precision of this experiment 

1976 R. Vessot, M. Levine et. al. hydrogen maser clock sent into 
suborbital flight at an altitude of 10,000 km or 1.5 r

E
 in a 

Scout D rocket. Clock uses a quantum mechanical 
transition between two very stable (with a lifetime of 10 
million years) energy levels of a hydrogen atom that emits 
light with a frequency of 1,420 MHz or a wavelength of 21 
cm. It’s rate of ticking is compared to that of an identical 
clock which remains at the earth’s surface 

 
 
 

Agreement to 70 parts per million, 
i.e. 7/1000 of 1% 


