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UNL 2201: Space, Time & Matter                                                                              Tutorial 3 

 

1.   Suppose you have a little rubber square. If the square was simply moved from A to B, that change 

could most simply be expressed by an arrow connecting A and B, in other words, by a vector. But 

suppose the square is not moved, but instead the two opposite corners are pulled apart, resulting in a 

little parallelogram. Can the change from square to parallelogram represented in terms of: 

                    a) a scalar                                  b) a vector                               c) neither ? 

 

Questions 2 to 7 inclusive are to be done as a group project 

 

2. There are very many different proofs of Theorem 47 in Euclid’s Elements (the Pythagorean 

Theorem) – they are of varying intricacy and some proofs are geometrical, while others algebraic. 

Shown here is a reproduction of a proof dating 

from 100 BC (Euclid’s Elements itself dates 

from          around 300 BC).  

Two pages from the Zhou Bi Suan Jing 

(Arithmetical Classic of the Gnomon and the 

Circular Paths of Heaven), an ancient Chinese book 

on astronomy and mathematics dating from 

approximately 100 BC - the page on the right 

demonstrates the Pythagorean Theorem. (The 

image is reproduced from a Ming dynasty copy 

printed in 1603.) 

                                                                                                 

Look up some of the proofs of the 

Pythagorean theorem in the relevant 

literature and reproduce at least one 

such proof that you find appealing. 

 

3.    In the context of Euclidean geometry,  

a) Playfair’s axiom is equivalent to Euclid’s 5th or parallel postulate. Can you prove their 

equivalency? [Hint: You would need to show that Euclid’s 5th postulate implies Playfair’s axiom 

and that Playfair’s axiom implies Euclid’s 5th postulate.] 

 

 

b) Assuming that the three angles of any triangle add up to 180◦, show that Playfair’s 

axiom (or equivalently, Euclid’s 5th postulate) must be true. 

 

 

4a.     Consider the surface of a sphere of radius R. On its 

surface, you can draw the geodesic triangle ABC (in other 

words, each side of the triangle is an arc of a great circle). Let 

the angles at A, B and C be α, β and γ (in radians) with opposite 

sides a, b and c respectively.                                                     

In spherical geometry, the usual law of cosines is instead: 

 

cos (c/R) = cos (a/R) cos (b/R) + sin (a/R) sin (b/R) cos γ etc. 

α 

β γ 
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Assume that just one of the angles (say, γ) of the geodesic triangle is a right-angle (in which 

case, note that the sum of the other two angles of the triangle will add to more than 90◦).  
 

Show that such a geodesic triangle drawn on the surface of a sphere does not satisfy 

the usual (Euclidean) Pythagorean theorem.  

[Hint: Use the Maclaurin series expansion for cosines: cos x = 1 - x2/2! + x4/4! - ... . ] 

 

For a generalisation of the Pythagorean theorem to spherical geometry, see  

https://demonstrations.wolfram.com/SphericalPythagoreanTheorem/  

4b.     Say point A is the north pole, while B and C lie on the equator; take β= γ= π/2 and show that the 

area of the triangle ABC therefore equals αR2. This is a special case of the formula, first obtained by the 

mathematician Thomas Harriot (in 1603!), for the area A(Δ) of any spherical triangle as a product of 

the angular excess E (the sum of its three angles less π) and the squared radius of the sphere: 

                                            A(Δ) = (α + β + γ – π) R2 = E(Δ) R2 

Can you derive this expression?  

5.   You will need a spherical object (eg. a football or a basketball) and a large enough sheet of paper. 

First, measure the circumference (ie. the equator of the ball). Then, on the ‘flat’ sheet of paper, draw a 

circle with a radius that is one quarter of the ball’s measured circumference. Cut along the 

circumference so that you now have a circular sheet of paper. Next, divide the circle you have drawn 

into sixteen equal wedges and cut along the dotted lines (being careful to keep the wedges joined at 

the centre of the circle) as indicated below. 

  

 

 

 

 

  

 

a) Now try to smoothly (i.e. the pieces of paper should be made to lie flat on the surface of the ball) 

cover the northern hemisphere of the football with your circular sheet of paper, without leaving any 

gaps between the wedges – are you able to do this? If not, explain why you think this is the 

case, and figure out a way that allows you to cover the northern hemisphere of the ball 

smoothly with the wedges of paper.  

In fact, the total arc length of the ‘flat’ circle’s circumference which you will need to remove equals the 

amount of shortening required to obtain precisely the circumference of the equatorial circle on the 

ball’s surface with a ‘radius’ given by the geodesic distance between the north pole and equator. 

 

b) Geometrically speaking, your football is a surface of constant positive curvature, and one can get a 

good estimate for the curvature at any point on the ball’s surface using the following expression: 

 

                         curvature   =   fractional circumference discrepancy x 6π          (in radians/cm2) 

                                                   area responsible for the discrepancy 

What is your value for the curvature of the football? 

https://demonstrations.wolfram.com/SphericalPythagoreanTheorem/
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Finally, assuming that the earth is a perfect sphere, estimate the curvature of its surface. 

 

6.              A curve known as the tractrix can be obtained 

by attaching a rod (or string) of fixed length R to a small 

weight and then laying the rod and weight flat on a table 

along the direction x (refer to the diagram below left) and 

then slowly pulling the free end of the rod (or string, 

keeping it taut) in a direction y that is perpendicular to the 

x-axis. A tractrix is the dotted curve traced out by the 

weight as it gets dragged across the table.  

 

 

 

 

 

 

                       The surface obtained by rotating the tractrix around the y-axis is known as a tractroid 

(refer to the diagram on the right) and provides a model of a pseudo-sphere (a surface of constant 

negative curvature).  

Note that, no matter the position of the dragged weight, the rotating rod always traces out a cone 

(tangent to the pseudo-sphere) of fixed slant length R. You can use this fact to construct a physical 

model of a pseudo-sphere by the following procedure.  

i) Stack together as many sheets of paper as you can cut with a pair of scissors and staple 

them together along three edges (only a few staples per edge). 

ii) Find the largest plate of bowl that fits within the size of your paper and trace out its circular 

edge. 

iii) Next, cut along this circle to produce identical discs and repeat the procedure until you have 

at least 20 such discs – the more, the better! 

iv) Take one of the discs and make a cut along its radius from a point on its circumference to 

the centre. Then slightly overlap the two sides of the cut and attach them (either glue, 

staple or use scotch-tape) together to create a very shallow cone. 

v) Repeat the last step using another disc, but this time overlap the two sides a little more to 

create a slightly less shallow cone, but still with exactly the same slant length as your first 

cone. Place the new cone over the first one. 

vi) Keep on repeating the last couple of steps, until you have used up all the discs which you 

had cut out. 

You now have your own model pseudo-sphere! 

 

 

7.              For a general surface, an explicit formula that relates total curvature within a geodesic 

triangle to the excess/deficit from π of the sum of the three angles (θi with i=1,2,3) of the triangle is:  

                                                 ∫K dA = E(Δ) ≡ Σ θi – π 

 
Δ                       i 

x 

y 
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where K is the Gaussian or intrinsic curvature at any point within the triangle.  

                  The special case of a homogenous space (a space which is the same at every point) is 

especially simple - such a space will have constant curvature. By considering an appropriate geodesic 

triangle on each of the following 2-dimensional homogenous spaces (in other words, surfaces of 

constant curvature) – the Euclidean plane, the surface of a sphere and pseudosphere (a surface with 

hyperbolic geometry), use the formula above to determine the Gaussian curvature of each of 

these surfaces.  

                   What is the maximum area that a triangle satisfying hyperbolic geometry can 

have? 

[Hint: For this question you can use Lambert’s formula for the area of a triangle in either spherical or 

hyperbolic geometry: 

                                          Area of triangle = ± (θ1 + θ2 + θ3 – π) R2      

(the + sign is for the sphere of radius R, while the – sign is for a pseudosphere with an equatorial or 

cusp radius of R).] 

 

                                                                      

Optional Topic - a mathematically more sophisticated discussion followed by a 

question: 

          The Pythagorean theorem, Gauss’ theorema egregium & the metric tensor 

                                                               

                        Consider a 3-dimensional cartesian co-ordinate system labelled by (x, y, z) and two 

points separated by a distance Δl. Then the Pythagorean theorem in 3-dimensions gives 

                                              Δl2 = Δx2 + Δy2 + Δz2   

Note that, if the two points are taken to be very close, then (in the usual notation of the infinitesimal 

calculus) we could set Δl = dl  etc. and instead write 

                                          dl2 = dx2 + dy2 + dz2   

                       Now, let’s write the Pythagorean theorem in another way. To do this we introduce gab, 

a so-called second rank tensor. (A tensor is a geometrical entity that is independent of a co-ordinate 

system. A scalar is a zero rank tensor and has a single value at every point in space. A vector is a first 

rank tensor and has three components at each point in 3-dimensional space.) 

                       Using gab, the Pythagorean theorem in 3-dimensions becomes 

                                                                                        

                                      
 

                                                         

With the notation that dx1 = dx, dx2 = dy and dx3 = dz. We may simplify this further by adopting the 

summation convention that repeated indices are to be summed over their range and write: 

                                         dl2   =  gab dxa dxb           

 

                Expanding the right-hand side of the last equation, we have: 

         3 

dl2   =  Σ gab dxa dxb              

     a, b = 1 
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                                   dl2   =   g11 dx dx + g12 dx dy + g13 dx dz 

                                      +  g22 dy dy + g21 dy dx + g23 dy dz 

                                      +  g31 dz dx + g32 dz dy + g33 dz dz 

 

                Setting g11 = g22 = g33 = 1 and all the other gab values to zero, we recover the relation  

                                             dl2 = dx2 + dy2 + dz2   

which is just the Pythagorean theorem in cartesian co-ordinates. In sum, we can calculate the distance 

between two nearby points in space as the metric equation 

                                                  dl2   = gab dxa dxb                               (1)                      

where the metric tensor gab (or metric for short) written out as a matrix is: 

                                                                   1   0   0 

                                             gab =        0   1   0                              (2) 

                                                             0   0    1 

                            The metric tensor is extremely important in geometry because it enables us to 

calculate the distance between two points if we have the co-ordinate differences between the points. If 

we know the metric tensor of a space, we can construct most things that we might wish to know about 

that space. Note that, if a general space (called a manifold by mathematicians) does not possess a 

metric, then ‘distance’ has no meaning in that space. Geo-metry, originally derived from the words 

referring to “earth” and to “measure”, requires the existence of a metric to make such distance 

measurements possible! 

                             Equation (2) expresses the components of the metric tensor of 3-dimensional 

space within a cartesian co-ordinate system. However, the physically significant quantity we are 

measuring is the distance between two points and (as we shall see) in Newtonian physics, this distance 

is invariant and we must get the same answer no matter which co-ordinate grid we choose to work 

with. For example, we can re-write the Pythagorean theorem using instead spherical polar co-ordinates 

(r, θ, φ),  

 

 

 

 

where (show this!) x = r sinθ cosφ, y = r sinθ sinφ     and z = r cosθ (with 0≤ r≤∞, 0≤θ≤ π and 

0≤φ≤2 π). Then 

                                         dl2 = dr2 + r2(dθ2 + Sin2θdφ2)                       (3) 

                             Equation (1) remains valid, but the components of the metric tensor now become  

                                                  1      0       0 

                                    gab =      0      r2       0                                    (4) 

                                                  0     0    r2 Sin2θ      

x 
y 

z 

r 

φ 

θ 
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                              We can if we wish use a completely arbitrary co-ordinate grid; while the 

components of the metric tensor will change from their cartesian values, the distance dl2 however, will 

always be given by equation (1) above. This equation is more elegant and general than the usual form 

of the Pythagorean theorem, but this is at the expense of introducing a metric tensor with components 

that depend on the co-ordinate system being used. The approach might seem overly formal, with few 

advantages, so why go through all this trouble? It was in fact Gauss who first showed the importance 

of this approach to geometry. 

                                  Tasked with making a geodetic survey of the province of Hannover, Gauss was 

faced not with small, relatively flat areas to survey but with a large-scale region with hills and valleys.  

He realised that the standard Pythagorean theorem with gab =  1  0    was of little use to him. Instead,                                                            

                                                                                           0  1                                                         

Gauss discovered a profound new result that he called the theorema egregium or ‘outstanding 

theorem’. His theorem demonstrated that surveyors could lay down any arbitrary co-ordinate grid they 

wished to use on top of a surface – different surveyors were free to lay down different co-ordinate 

grids – and they could determine the shape of the surface from the manner in which the metric 

components of gab varied from place to place on the surface. In other words, what was important was 

not the co-ordinate grid itself (surveyors could use cartesian co-ordinates, polar co-ordinates, or any 

other system) nor the particular values of the metric components (since these would be different in 

different grids) but the variation with position of the metric components. If the 2-dimensional surface 

was covered with general co-ordinates (x1, x2) then the theorema egregium showed that all surveyors 

would agree on a quantity K known as the (Gaussian) curvature. The quantity K is thus an intrinsic 

property of the space The mathematical form of K (for a 2-dimensional space* and with an orthogonal 

metric**) is: 

                       

                                                                                                                                                                                                   

                       

 

                                                                                                                                                    

(5) 

* Surfaces are parametrised by two co-ordinates x1 and x2; consequently, when taking a derivative, we 

need to distinguish between it being with respect to x1 or to x2. This is done by taking a partial 

derivative (denoted ∂/∂x1 or ∂/∂x1) which simply means that when differentiating with respect to x1, 

the other variable x2 is to be kept fixed and vice versa. 

** An orthogonal metric is one in which gab=0 for a≠b which implies that the co-ordinate axes for x1 

and x2 cross at right-angles, as is the case for the metric tensors we are considering. The general 

expression for K, involving non-diagonal components of gab, is a little more complicated. 

                Finally, the question: 

Question:   Using Gauss’ theorema egregium, i.e. equation (5) above, show that K = 1/R2 for the 

surface of a sphere of radius R.                                                                                                                                                                                                                                                                                                                                                                                              

[Hint: Use the metric equation in spherical polar co-ordinates, (3) & (4) above, taking the r co-ordinate 

to have the constant value R as the (fixed) radius of the sphere. Then identify the variables (x1, x2) in 

equation (5) with the two remaining co-ordinates (θ, φ).] 

 

K =       1          - ∂2g11  -  ∂2g22  +  1     ∂g11 ∂g22 +  ∂g11  
2   +  1     ∂g11  ∂g22 +  ∂g22  

2 

         2 g11 g22     ∂(x2)2       ∂(x1)2  2g11    ∂x1   ∂x1       ∂x2              2g22      ∂x2     ∂x2           ∂x1 

 

 

 


